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Formal asymptotic expansions of homogeneous liquid flow with free boundaries and van- 

ishing viscosity were constructed in [i]. The main asymptotic flow terms of an inhomoge- 

neous incompressible flow are developed in the present study, and it is shown that the ef- 
fect of buoyancy forces leads to perturbation transfer to the top of the flow and the pres- 
ence of velocity profile oscillations in the boundary layer near the free boundary. 

For the Navier-Stokes equation with large Reynolds numbers we consider the planar sta- 
tionary problem of liquid motion in a region D, confined by a free surface F and an impene- 
trable wall S. It is assumed that the liquid is incompressible, stratified in density, and 
that there is no diffusion. For the model under consideration the equations of motion are 
[2] 

p(v,V) v=--Vp+e2Av--p.e~.F -1, v.Vp=0, d ivv=0,  

p.n- -2e~H.n=T,  v .V/ t=0 ,  (x,z)~F, v].~= 0. (1) 

If the region D is not confined in the x-coordinate, it is assumed that a periodicity condi- 
tion is assigned, or the behavior of the velocity field is given for Ixl § ~. All quantities 
in Eq. (i) are dimensionless: The dynamic viscosity coefficient ~ is assumed constant, ~2 = 
i/Re is a small parameter, Re = UILp,u I is the Reynolds number, F = U~/(gL) is the Froude 
number, g is the acceleration due to gravity, UI, L, p, are the characteristic sizes of 

velocity, length, and density, the z axis is directed vertically upward, e z = (0, i) is a 
unit vector along the z axis, n is the unit vector of the normal to the free boundary, 
fz(x, z) = 0 is the equation of F in implicit form, E is the tensor of deformation veloci- 
ties, T = (T~, T~) is a given load on F, while T~ = T'n = 0, which corresponds to absence of 
normal stresses on F. It is assumed that T2 = O(~2), where T2 is the tangential stress on F. 

We introduce the stream function ~(v x = 3~/~z, v z = --~/3x). We note that in the case of 
finite depth the problem under consideration is that of periodicity functions in the x coor- 

dinate for v, p, T. 

Asymptotic expansion solutions of problem (i) for vanishing viscosity c § 0 are con- 

structed in the form 
N N N 

h ~ o  h ~ o  h ~ l  

where z = ~(x) is the free boundary equation. A similar series is constructed for the func- 

tion p with coefficients Pk, qk, Xk" Boundary layers are formed for vanishing viscosity near 
the region boundaries. We denote by D S and D F the boundary layer regions, respectively, near 
the solid boundary S and the free boundary F. Then~~ k, R,, qk are functions of the solution 

type of the boundary value problem in D r while Ck, rk, Xk are those in the D S. The func- 
tions ~k' Pk, Pk determine the solution outside D F. It is further assumed that in the region 
D F the Froude number is of order O(E2), i.e., F = ic2, X = O(i). In this case the action of 
buoyancy forces is manifested in D r . Everywhere outside the region D r the number F acquires 
the finite value Fo. We note that the values F = O(s 2) in D r correspond to small velocity 
values near the free surface. Such cases are encountered in the equatorial zone of the 
ocean [3], where at a depth near the thermocline there occur powerful "subsurface" flows, 
oriented eastward along the equator, while inverse flows are formed near the ocean surface 
with substantially lower velocities, oriented westward in the wind direction. Besides, flow 
drag near the free surface and formation of an opposite flow can occur for spatial non- 

equilibrium of the tangential stress [4]. 

The main asymptotic terms ~o, Po are found by solving the problem of an inviscid liquid 
flow in the region Do with free boundary Fo. The functions *o, Po satisfy the system 
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: (O,o ~o) ~ F -~~176  J (,Oo, ~,,) 0 (3) oo: (~%, %)+ ~ :(!~;,  %)+  ox \ o~ , = o ~ ,  = 

with boundary conditions 

Po = ~ o  = O, (x ,  z)  ~ ro,.  v o . n l l s  = 0 

and corresponding conditions in x. Here J(A, B) = (3A/3x)(3B/3z) -- (3A/3z)(3B/3x); n~ is the 

normal vector to S. It follows from Eq. (3) that Po = f(vo), where f($o) is an arbitrary func- 
tion of 4o. It is further assumed that the solution of problem (3) is known. 

The functions ~k' Pk (k >~ i) are constructed by means of the first iteration process 
[5], and satisfy the linear system 

k O z '  j= \ Ox ' 
i+j+ z=/~ 

= F - ~  091, 
') b-k- + a,,~qh_2, 

(4) 

It follows from Eq. (4) that Pl = ~if'(~o), o2 = ~2f'($o) + 0.55~f"(*o), etc. The boundary 
conditions at the free boundary will be given below for the system (4). 

We now determine the functions Yk, Rk, which are lumped near the free boundary and com- 
pensate the inviscid term, generated when the dynamic condition is satisfied for the tangen- 
tial stress on F. Near F we introduce local coordinates (r, (p) by the equations 

x = X ( ~ ) + r n ~ o ,  z = Z  ( ~ ) +  rn~o ,, 

where r is the distance between the point (x, z) and Fo, the free boundary of the inviscid 
flow (3), nxo , nzo are the components of the unit vector normal to Fo; x = X(9) and z = Z(9) 
is the parametric equation of the contour Fo. Equations for ~k, Rk are found by applying 
the second iteration of the process of [5] to system (i). Substituting (2) into (I), the equa- 

tions obtained are written in the local coordinates, and we expand the known coefficients in 
Taylor series in powers of r. We assume r = cs, F = X 2 for the functions ~k, Rk, and F = 

Fo for Pk, Pk" Equating to zero the coefficients of s ~ ~, ..., sN, we derive equations for 
the determination of ~k, Rk" The function ~o satisfies a homogeneous boundary-value problem, 
whose solution is selected in the form ~o = 0. Similarly, ~ = 0. The function ~k (k ~ 2) 
satisfies the problem 

sa(~) o -  T + b ( ~ ) 7 7  ~ - - a ( ~ )  o~ = ~olr o~ ~ ~ 1 ~  ~ ~  + M~, (~) 

o"~ h 6- ~ o %_~ o %~_~ o%_~ ] 
Os ~ s=o OT z Or z 

The coefficients Hk, Nk, Qk are known, and are not given due to their awkward shape, while M~ = 
Q2 = O, N2 = T2(~). Here 

0 a(q~)=~[Vo-Vr]~=o; b(~) =Vo-Vq~[~=o, 

and z and S are the curvature and Lamd coefficient of the contour F o. The boundary condition 
~k]s=~ = Qk is obtained by applying the second iteration of the process to the kinematic 
condition on F. 

Consider the case in which the free boundary of the inviscid flow is rectangular (z = 0). 

Now nxo = O, nzo = i. Applying the second iteration of the process to (i), we derive a bound- 
ary condition for ~k 

sa  (x)  03~1~ Oath 1 0 ~  O'4rh 
a--- ~- + b (x) ~ = ~o Ir o~ ~ + t~ ~ + T[~, (6 )  

s=o 8~k 8s 2 8z 2 Ox 2 8s 

375 



w h e r e  ~ = % - ~ f ' ( O ) / P o [ F ;  f ' ( O )  = ( ~ p o / ~ Z ) / V x o l z = o ;  fie = Q= = O, N= = T a ( x ) ;  a ( x )  = 
[$Vzo/SZ]z=o; b(x) = Vxoiz=o; s = z/e. 

We determine the boundary conditions for the system (4) on the free boundary F. We 
write the equation for F inthe form r = ~(~) = eE~(~) + e~Ea(@ + ... (here it has been taken 
into account that r = 0 is the equation of F at e = 0). Applying simultaneously the first 
and second iteration processes to the kinematic condition, the dynamic condition for the nor- 
mal stress, and taking into account the condition ~k = Qk (s = El), we derive the relations 

2 
3~ o , OP o 2 0 ~ _ ~  2• O~h-2 =Gh (r=O),  

~ - r  ,=o + ~ n l ~ = ~  p~ + q~ + ~ -~r + ~ Or@ 6 @ 

w h e r e  k ~ 1;  Ez = G1 = ~-~  = 0.  

The b o u n d a r y  l a y e r  f u n c t i o n s  ~k ,  r k ,  Xk o c c u r  i n  t h e  r e g i o n  D S and  c o m p e n s a t e  t h e  i n -  
viscid terms, generated when the sticking conditions in (i) are satisfied. The function ~o 
satisfies a homogeneous boundary condition, whose solution is written in the form r = 0. 
In the case F = 0(i), we obtain is D S for r a nonlinear problem, which, as in [i], reduces 

to the Prandtl boundary layer equations of a homogeneous liquid. Let F = ~e in D S. To 
determine ~ we now apply the boundary layer method in the same way as in deriving Eq. (5). 
We introduce (r~, ~), the local orthogonal coordinates near the boundaries of S. The prob- 

lem for r ~) is 

6~ \ og + ~ + 6~ 0% ~ ~ a~ ~ ~ 

0% ~176 q=o ~ k=~ = 0, ~ I~=o = O, o~ > o  - ?-rq ' 

f" (0) nx:O~l ' 

where ~ = rl/~; bx(~1) = 3@o/~ri (r~ = 0); al = --67~2@o/3r1~1(rl = 0); 61 is the Lame coef- 

ficient of the contour S, n~ = (nx~, nzl). 

Consider the case of a rectilinear boundary S: z = --h. The action of buoyancy forces is 
now manifested in D S for F = hE 2. The boundary layer equation for r is obtained in the form 

11 a3~1 
~4~ 1 

Co, o,o , 

0~ 1 0~1 

w h e r e  BI = X - ~ f ' ( O ) / P o l s ;  E1 = (z  + h ) / ~ .  

Thus, to integrate the system (i) we initially determine the flow of an inviscid liquid 

(3), then the flow in the boundary layers D S and the first approximation (4), and then the 
flow in the boundary layer near DF. In the absence of a solid boundary the flow in the bound- 

ary layer near F is determined after integration of the system (3). 

Example. Let the flow of the inviscid liquid be given by the velocity field Vxo = 

U(z), Vzo = 0 and the density distribution po = po(Z). The region Do is the half-space z 
0, and the free boundary Fo is rectilinear. The tangential stress on F is given by the equa- 
tion Ti(N) = --U'(0) + T,e -~x for x > 0 and Ti(x) = --U'(0) for x < 0(~ > 0). The boundary 

layer problem near F acquires the form 

~ ~2 ~3~2 = 0, (7) 
o--  c + ~-aT = - - u  (0) o~o---~ 

w~ 1.=o = o,  o s  ~ I~=o (x > o), o-7- ~=o = o ( .  < o), 

0% 0 (s oo). 

It was here taken into account that El = 0, po(0) = i, ~ = X-x0~(0)/U(0). It is further as- 
sumed that a stable density stratification is given p~(0) < 0 [2] and U(0) > 0; therefore 
B < 0. The problem (7) is solved by a Fourier transformation in x. The solution ~2 is writ- 

ten as 
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oo 

< T(o) ( e - h  * _  e - h  ~)e-{~ 
(8) 

where T(o) = (m -- io)-I(2~) -~, v: and v2 satisfy the equation 4 + ioU(0) = _ i~6 = 0 and 

have the form 

Vl,2 

while those root branches are chosen for which >, < 0 and Real >= < 0. The integral (8) is 
calculated by means of the residue theory, for x > 0 the integration region G is selected in 
the lower half-plane Real o~0, confined by a semicircle of large radius R with center at 
the origin of coordinates, a semicircle of infinitely small radius 6o with the same center, 
and the real axis segments o(--R, --6o), (5o, R). Continuing analytically the integrand func- 
tion in G, applying the Cauchy residue theorem, the Jordan lemma, and carrying out the tenden- 
dies R § ~, ~o § 0, we find 

~f2 = -- 

t where ~ _-- -- -- 
2 

2T, e -as sin ?s 
U(O) y o  V % - - o  e-~X (x>O) ,  (9) 

~'=-Yt 1/U7~(0)]/-~ + / ~ ;  ~0 = 41131U-2 (O) (%>~o). For 

x < 0 we also apply the Cauchy theorem, taking into account that ~ = 0 is a branching point. 
We introduce the integration regionG1 in the upper half-plane Realo>/0,confined by semicircles of 
radii R and 6o with a cut along the imaginary semiaxis from the point o = 0. As a result of 
integration over G and the transformation to the limit at R + co, Go § 0 we obtain 

~F2 = ao(0) u(o) ( o + ~ ) ] / ~ ( % §  e$~d~ ( x < 0 ) .  (10) 
0 

For x + -~ and fixed s the integral (i0) has the asymptotic representation [6] 

t.226 s ( ) -- .  - -  o 1 
~ = ~oop V F  (o) ( -  ~)~/~ + ~ 

It follows from Eqs. (9), (i0) that the velocity profile in the boundary layer oscil- 
lates along the z-coordinate. 

We note that if F = 0(i) in the boundary layer region DF, in Eq. (7) one must put ~ = O. 
Equation (7) is easily solved by means of the Laplace transform. The function T2(x, s) is 
now monotonic in s, and ~2 = 0 for x < O, i.e., perturbations are not transferred from above 
the flow. Thus, the action of buoyancy forces leads to perturbation transfer from above the 
flow and the presence of oscillations over the z-coordinate in the velocity profile at the 
boundary layer near the free boundary. 
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